convert_to_tfe#
- convert_to_tfe(all_data: pd.DataFrame, features: list[tuple[str, str, str]], frame_spec: tuple[int, int, int]) dict [source]#
Generate TFE manifest and feature data for simulation.
- Parameters:
all_data – Simulation data containing ID, TICK, and time.
features – List of feature keys, names, and data types.
frame_spec – Specification for frames.
- Returns:
TFE manifest and feature data
- get_manifest_data(features: list[tuple[str, str, str]], frames: list[int]) dict [source]#
Build manifest for TFE.
- Parameters:
features – List of feature keys, names, and data types.
frames – List of frames.
- Returns:
Manifest in TFE format.
- get_tracks_from_data(data: pd.DataFrame) dict [source]#
Extract track ids from data and format for TFE.
- Parameters:
data – Simulation data for selected frames.
- Returns:
Track data in TFE format.
- get_times_from_data(data: pd.DataFrame) dict [source]#
Extract time points from data and format for TFE.
- Parameters:
data – Simulation data for selected frames.
- Returns:
Time data in TFE format.
- get_feature_from_data(data: pd.DataFrame, feature: str, categories: list | None = None) dict [source]#
Extract specified feature from data and format for TFE.
- Parameters:
data – Simulation data for selected frames.
feature – Feature key.
categories – List of data categories (if data is categorical).
- Returns:
Feature data in TFE format.